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ABSTRACT performance of this recursive detection technique in the

This paper describes a recursive detection scheme for point presence of non stationary noise. Section 4 describes the

targets in infrared(IR) images. Estimation of the background application of this detection technique to infra red images

noise is done using a weighted autocorrelation matrix update with two dimensional signals.

method and the detection statistic is calculated using a re- 2. RECURSIVE ESTIMATION AND
cursive technique. A weighting factor allows the algorithm to DETECTION
have finite memory and deal with nonstationary noise charac-
teristics. The detection statistic is created by using a matched For a known signal in colored noise, the detection statistic

filter for colored noise, using the estima~ed noise autocorre- is given by[l][2]

lation matrix. The relationship between the weighting factor, X = T.-tx (1)
the nonstationarity of the noise and the probability of detec- where g is the detection statistic, 4, is the autocorrelation
tion is described. Some results on one- and two-dimensional matrix of the noise, a a p x 1 vector is the known signal
infrared images are presented. to be detected, x a p x I vector is the input data and p is

the length of the known signal or the time of integration in
classical detection. g is compared to a threshold, go, and

1. INTRODUCTION a decision on the presence or absence of the signal, s, is
made accordingly.

A well known technique of detecting objects in noise is If the noise is unknown, 41 must be estimated from the
matched filtering. For signal with known shapes, for a fixed received data. If the time of integration, n is fixed, a max-
integration time, matched filtering has been applied in the imum likelihood estimate of the noise autocorrelation ma-
presence of white and colored noise(l](2]. In the presence trix is given by [7]
of colored noise most detection schemes use a prewhiten-
ing filter [1](2](3][41 to whiten the noise, before applying a n

matched filter to get a detection statistic. This prewhiten- 4' =  -,x(k)x(k)T (2)
ing filter may be adaptive or non adaptive depending on k=o

the amount of a priori knowledge available about the cor- Often, detection is done with a finite length, known signal
rupting noise process. For detection in unknown and pos- tenldtecn i one wta fin ln t n signa
sibly nonstationary noise, an adaptive filter can be used, template and a continuous stream of input data. s fa
leading to a two stage formulation with a prewhitening il- p x vector, but a decision on the presence or absence ofter followed by a matched filter[3][4][5]. If the object of a has to be taken at the time is > p and at every time

ter ollwedby amathedfiler[3[4]5].If te ojec of instant after that. This is known as the recursive detection
interest is known to be small, occupying less than a pixel, isaters
this shape is then defined by the point spread function of problem.
the optics which is known in advance. In this case, or in given by
the case where the shape of the signal is known precisely, give by
the two steps of whitening the noise and matching to the g(n) i(n)x(n) (3)
signal can be combined into a single step. and the estimate of the noise characteristics can be im-

In Section 2 we describe the algorithm for the estima- proved as more and more samples of the incoming data
tion of noise and the calculation of the detection statistic become available. In particular, if the signal is assumed to
as a single step algorithm. In section 3 we describe the have very low energy as compared to the noise (as is the

case with point signals in spatially extended noise), Eq. 2
'This work was supported by the NSF I/UC Research can be used to estimate the noise recursively.

Center on Ultra High Speed Integrated Circuits and Systems For nonstationary noise applications, a weighted esti-
(ICAS) at the University of California, San Diego. The Office of mate can be used, leading to
Naval Research, Applied Research and Technology Directorate
(Code 012) and the National Science Foundation under grant
#ECD89-16669 and the U.S Naval Ocean Systems Center In- 4'(n) = A'n-'x(k)x(k)T (4)
dependen! Research Program. k=o
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Figure 1: Input: Non-stationary Figure 3: Detection Statistic: without weighting

degrades with any change in the noise statistics. As seen
in Fig. 2, using a value of A = 0.99 leads to the matched
filter being able to adapt to the changing noise statistics
and hence provide a detection statistic corresponding to
the signal of interest.

3. DETECTION STATISTICS

Figure 2: Detection Statistic: weighted In this section we study the change in the probability of de-
tection for this recursive estimation technique. The proba-

where A is a weighting factor. If the noise is nonstationary bility density function of the data under Ho (signal absent)
and X < 1, this estimation technique will be able to track and Hi (signal present ) is assumed to be Gaussian. The
the non stationarities in the noise and consequently give a variance under both test hypotheses are equal. The mean
more precise detection performance than a fixed matched under Ho is zero, while the mean under H, is known[2]
filter. A = 0 corresponds to an instantaneous estimate of to be m; = sT4 -s. The probability of detection, for a
the noise and A = 1 corresponds to the maximum likeli- stationary process, then becomes
hood estimate for a stationary noise process. The tracking
behaviour of such an estimation process for 0 < X < 1, for 1 [go - m (7)
one dimensional adaptive prediction has been studied in P 2 = eric
[81 and others. In section 3, the detection performance %.f
such an estimation procedure is described, where, a is the variance of the process, m is the mean

Eq. 4 can be expressed as a recursion equation, to get under H1 , go is the threshold used, and erfco is defined
a recursive update equation for 4 -' ie, as

)= A- -'(n - 1) erf c(z) = f e- dz (8)

(A-2, -
1 (n - 1)x(n)XT(n)_-(n.- 1) Similarly the probability of false alarm is defined as

This is similar to the update equation used for updating P 0 = [erfc (9)
the weights of a recursive least squares adaptive filter [7]. 1 go I

This leads to a detection statistic given by For a non-stationary process, assume that at the n - 1

sample, the estimation process is exact and the autocorre-

g(n) A - sT - (n - 1)x(n) lation matrix used in the detection process is exact. Then,
I(n 1 + A-Xr(n)-(n - 1)x(n) the following quantities can be found exactly as

Simulation results for this weighted decision statistic are g*(n - 1) = sT.I1 (n - 1)-'x(n - 1) (10)
shown for one dimensional nonstationary data. Fig. I m(n - 1) =s *(n
shows the non stationary input to such a detection fil-
ter. The noise used, was a second order AR noise model, ar'(n - 1) = (s '$(n - l)-is) (12)
and the coefficients of the model were allowed to change
abruptly at the sample point 512. Two signals were em- P;(n 1) = 1 / - m*(n - 1) (13)
bedded in this noise, one at sample point 400 and another2 d/r2-*n - 1)]
at 800. Fig. 2 shows the output from such a detection fil- -
ter using Eq. 5. Fig. 3 shows the detection statistic that P;.(n - 1) =2erfc[C1 ] (14)

would be obtained if the noise were assumed to be station-
ary, and the estimation of the autocorrelation matrix was where the * implies the "optimum values" obtained by
done without any weighting. This corresponds to A = I. It the use of the exact autocorrelation matrix:. Here C/ is a
is seen that using the complete history of the noise process constant defined by the required false alarm rate as C1 =
to do a maximum likelihood estimateof the noise autocorre- erfc-' (2Po.
lation matrix does not allow the matched filter to adapt to Assuming the detector is designed to operate at a con-
any changes in the input noise and detection performance stant false aarm rate, ie.,Pfo(n - 1) = P 0 (r.), the new

2



"optimuip" probability of detection in nonstationary noise
is given by Eq. 15

P;(n) = lerfc Cf - n)-Is (15)

where, 4V(n) is the exact autocorrelation matrix at the
n h sample.

The corresponding probability of detection based on the
estimated autocorrelation matrix is

Pd(n) = [erf (5(nS' (16)

where, Z(n) = A'(n - 1) + x(n)xT(n)-
To model the nonstationarity of the noise in the input

data, we assume a change in the inverse of the autocorre- Figure 4: Input: Object Embedded in Infrared Im-
lation matrix as age Data

fn) - ' = 4I(, - I)- ' + A4I (17) 4. TWO DIMENSIONAL DATA

with A'I describing the amount of non-stationarity in the Infrared image data typically consists of sequences of two
noise process- dimensional images in one or more spectral bands. Typical

Further, assuming L4, to be small, and expanding the applications range from the detection of very small tumors
square root in a Taylor series in medical images to the detection of long range airborne

targets. The signal of interest in the application considered

P;(n) ;erfc[C ] (18) is a small point source of light distributed around a single
2 pixel according to the point spread function of the sensor

optics. This point spread function is typically known. For
where example Chan et. al. [9) show that for a Gaussian point

m'(n - 1) b*(n - 1) (19 spread function and a small sub-pixel target, the known
C; - 1) 2m(n - 1) (19) signal can be modeled as

and 6 = sA T.s. s(z,y) = re-(" (23)
The probability of detection based on the estimated au-

tocorrelation matrix can be similarly found to be where r is the maximum height of the signal, (xo,yo) is

I the spatial position of the signal and a, the rate of spatial
Pa(n) - 2erfc[C + Ad] (20) decay of the signal. This signal is typically embedded in

spatially extended nonstationary clutter

where the factor by which this probability of detection dif- Since such data maybe highly non-stationary across the
fers from the optimum is given by image, a two dimensional version of the recursive detec-

tion procedure developed in section 2 can be formulated

1 m'(n-1) /-\ 1 r'(n - 1) by ordering the data lexicographically as a vector. The
Ad = - f --- + 2 m + A) autocorrelation matrix for such an ordered data set then

Sa )becomes a block toeplitz matrix[10]. Such a matched filter

and21) was used in a noise canceler structure for multi-spectral
images and a typical input image and the corresponding

A output detection statistic are shown in Fig. 4 and Fig. 5.
The noise autocorrelation matrix was estimated from one- (22) channel of the multi-spectral data set, while the matching

was done on another channel.

Equations 20 21 and 22 define the relationship between The test signal in this case was uncorrelated between
the probability of detection (Pd), the rate of non station- the reference and the primary images. This enabled an
arity of the noise (AI,) and the weighting factor of the estimation of the noise statistics and led to considerably
weighted update (A)- Thus a proper choice of A depends whitening of the noise in the output detection statistic as
on the autocorrelation matrix of the noise, and can influ- can be seen in Fig. 5.
ence the probability of detection. The Signal to Noise Ratio(SNR) for a point signal in

3
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Figure 6: Input Pixel Intensity Distribution

Figure 5: Detection Statistic: Recursive

such an image was defined as the

SNR= 10log1 o ( ) 2 (24)

Figure 7: Detection Statistic Distribution
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